

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

 $D_{0.05} = 0.565$.

1 of 2

(08 Marks)

- 6 a. Explain the inverse transform technique for exponential distribution and uniform distribution. (08 Marks)
 - b. What is Acceptance Rejection technique? Generate 3 Poisson variates with mean $\alpha = 0.2$. Take the random numbers as : 0.4357, 0.4146, 0.8353, 0.9952, 0.8004, 0.7945. (08 Marks)

Module-4

7 a. Explain the steps involved in development of a useful model of input data. (08 Marks)
b. Customers arriving at a busy checkout counter in a 5 minutes period between 10 to 2 pm was recorded for days given below :

Arrival/period	0	1	2	3	4	5	6	7	8	9	10	11
Frequency	12	10	19	17	10	8	7	5	5	3	3	1

Use chi – square test to check whether the data follows Poisson distribution at 5% level of significance, $\chi^2_{0.05,5} = 11.1$. (08 Marks)

OR

8 a. The time required for 30 different employs to compute and record the number of hours worked during week days given :

				Sector Sector Sector		and the second se	
1.88	2.62	1.49	0.35	0.82	2.03	1.54	0.21
0.39	2.03	2.16	0.90	1.90	0.63	0.17	0.03
0.45	0.31	0.15	2.03	4.29	0.04	1.73	0.92
2.81	0.05	5.5	2.16	0.48	0.18	2000	

Use the chi-square to test the hypothesis that these service times are exponentially distributed at 5% of level of significance. Let the number of intervals be K = 6 and critical value 9.49. (08 Marks)

b. Explain the types of simulation with respect to output analysis. Give atleast two example. (08 Marks)

Module-5

9

a. Explain the concepts of point estimation and interval estimation. (08 Marks)
b. Explain any two output analysis for steady state simulation. (08 Marks)

OR

10 a. What is verification and validation? With a neat diagram explain in detail model building.

b. With a neat diagram, explain iterative process of calibrating a model. (08 Marks)

2 of 2